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Correlation function and generalized master equation of arbitrary age

Paolo Allegrini* Gerardo Aquind* Paolo Grigolini>* Luigi Palatella Angelo Rosd, and Bruce J. Webt
YINFM, unita di Como, Via Valleggio 11, 22100 Como, Italy
%Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, Texas 76203-1427, USA
3Dipartimento di Fisica dell'Universita di Pisa and INFM, Via Buonarroti 2, 56127 Pisa, Italy
“Istituto dei Processi Chimico Fisici del CNR Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy
5Dipartimento di Fisica and Istituto dei Sistemi Complessi del CNR, Universita di Roma “La Sapienza,” P.le A. Moro 2,
00185 Rome, ltaly
®Institut de Mathématiques B, Faculté des Sciences de Base, Ecole Polytechique Fédérale de Lausanne, 1015 Lausanne, Switzerland
"Mathematics Division, Army Research Office, Research Triangle Park, North Carolina 27709, USA
(Received 17 September 2004; revised manuscript received 21 December 2004; published 10 June 2005

We study a two-state statistical process with a non-Poisson distribution of sojourn times. In accordance with
earlier work, we find that this process is characterized by aging and we study three different ways to define the
correlation function of arbitrary age of the corresponding dichotomous fluctuation. These three methods yield
exact expressions, thus coinciding with the recent result by Godréche and[Lu&kat. Phys.104, 489
(2001)]. Actually, non-Poisson statistics yields infinite memory at the probability level, thereby breaking any
form of Markovian approximation, including the one adopted herein, to find an approximated analytical
formula. For this reason, we check the accuracy of this approximated formula by comparing it with the
numerical treatment of the second of the three exact expressions. We find that, although not exact, a simple
analytical expression for the correlation function of arbitrary age is very accurate. We establish a connection
between the correlation function and a generalized master equation of the same age. Thus this formalism,
related to models used in glassy materials, allows us to illustrate an approach to the statistical treatment of
blinking quantum dots, bypassing the limitations of the conventional Liouville treatment.
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I. INTRODUCTION from a “light on” to a “light off” state[10], with a non-
) ~ Poisson distribution of times of sojourn in these two states.
The phenomenon of aging has been known for a long timerhis is a quantum mechanical process that, in principle,
to be a property of spin glasses and polyniéis Part of the  should be described using a two-state master equation. How-
reason for the recent interest in the aging phenomenon has &wer, the important work of Junet al. [10] shows that the
do with the predicted breakdown of certain fundamental asadoption of the ordinary Liouville approach to the density
sumptions made in equilibrium statistical mechanics whertime evolution encounters serious difficulties, caused by the
applied to strongly disordered systems. For example, the Orpresence of aging. This difficulty is confirmed by the more
sager principlg2], which is the relaxation of a perturbed recent work of Aquinocet al. [11], who have evaluated the
system back to its equilibrium state described by an unperemission and absorption spectrum of this intermittent system
turbed autocorrelation function, is violated in anomalous dif-using the CTRW formalism. For this reason, it is important
fusion leading to an anomalous relaxation. More recent pat0 address the problem of the foundation of the master equa-
pers on this phenomenon are devoted to studying aging ion from the new perspective of trajectorigSTRW) rather
diffusion processes occuring thdimensional lattice§3], in ~ than from that of densities, as in the fundamental work of
low dimensional environment®] and in the quantum dy- ZWanzig[12]. The conflict between these two pictures, no-
namics of dissipative free particlé§]. Most recently[6,7] ~ ticed for the first time by Bolognat al. [13], is far from
there has been some interest in the manifestation of aging fpeing fully understood, and it is not yet clear if the contro-

processes described by means of the continuous time rando}f}ﬁrsy s due to the madequaqy of the k”OW’? for_ms of non-
walk (CTRW) formalism([8]. arkov master equations, derived from the Liouville-density

. . .. method, or to an even more fundamental reason, namely, the
The r_ec_ent.work of Refl9] establishes thf"‘t the INtermit- - o akdown of the generally accepted equivalence between
tent radiation-induced fluorescence of colloidal semiconduc

d | eld . Th . Ifhe density and trajectory pictures. To shed light into this
tor quantum dots also yields aging. These new material§y,,q ot jssue, herein we plan to reexamine the issue of

under the influence of a radiation field generate intermitten ing, widely discussed in the field of glassy materials, and
fluorescence suggesting that the system jumps back and forflg i nortant mathematical treatment of this property made

by Godreche and Luckl4] as well, from the perspective of
the generalized master equatiGBME).
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Physics, University of Amsterdam, Valckeniarstraat 65, 1018XEcorrelation function of the stochastic variable of interést,
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(E(t) E(to)) In concluding the Introduction, we point out that we re-
— o = chgta)(tl -ty). (1)  work the problem from a number of perspectives. We do this
(&) because each approach provides separate and distinct in-

sights into the phenomenon described by a GME of arbitrary

As we shall see throughout this paper, the paramtgtde- ~ agde. The first perspective adopted in this paper focuses on
notes the time distance between the preparation and the offie derivation of a GME, based on the experimental obser-
servation process. The averaging brackets carry a subscrig@tion of the time evolution of a trajectory, characterized by
stressing that this is g-old property, rather than the tradi- fare jumps from one state to another. The second perspective
tional aged property, only depending #q-t,|. The time USes a L|09V|Ile—llke approach.to the time evolutlon_ of the
difference indicates the stationarity of the underlying pro-variable of interest and its environment. No attempt is made
cess, but the, superscript denotes a dependence on the ag® derive the former dynamic picturerajectory from the
of the process as well. In the case of a dichotomous variabltter (probability density. The probability density perspec-
obeying renewal theory, the exact expression for the Laplacive is characterized by infinite memory, yet, the statistical
transform of this age-dependent correlation function wagrocess under study is generated by random critical events,
found by Godréche and Luckl4]. Their exact result was Whose occurrence erases the memory of earlier events.
recently recovered by Margolin and BarKab] as a special ~Therefore, we think it is prudent to examine, yet again, the
case of a more general expression, since the latter authors §8me process from a third perspective, one based on the di-
not require the condition that the two states of the dichotofect observation of the sequence of rare random events. -
mous variableé have the same waiting-time distribution. ~ We find that the use of three different perspectives is fruit-
However, herein we make the same assumption as did Géul in shedding light on the recent observation made by
dréche and Luck14], and derive their result along the lines Sokolov, Blumen, and Klaftef19]. Their results, in our
of the recent work of Ref.7]. Allegrini et al.[7] noticed that ~ Opinion, imply the breakdown of certain well-established no-
in the non-Poisson case the well known GME of Kenkre,tions of equilibrium statistical mechanics, such as linear re-
Montroll, and Shlesingef16] becomes incompatible with Sponse theory as a prescription for predicting the effect of
the Onsager principlE2] and found a way to make the GME €xternally perturbing a system out of equilibrium.
compatible with the aged condition. However, tH&} left The outline of the paper is as follows. In Sec. Il we em-
unsolved the problem of deriving a GME of arbitrary age,Ploy the reduced density perspective, namely, we build up
which would be equivalent to making the Onsager principlethe GME of arbitrary age. In Sec. Ill we study the time
Compatib|e with an incomp|ete|y aged System_ Herein W@VO!UUO” of the total distribution den.S.Ity. In Sec. IV we use
solve this problem and establish that this solution leads to th@ third method, based on the probability of occurrence of the
exact expression for the correlation function of arbitrary aggare random events. We devote Sec. V to illustrate the physi-
found by Godréche and Ludi.4]. cal connection between spin-glass and blinking quantum dot
The GME derived herein does not have the same origin a89ing. Finally, in Sec. VI we make some concluding re-
those widely discussed in the literatur#2]. The Zwanzig —Marks.
GME, in fact, one of the most popular master equations, is
derived from a first principles procedure, starting from the
statistical Liouville equation of the whole universe. The This section is devoted to the application of the reduced
Zwanzig GME is a projection of this universal Liouville density perspective to the construction of a GME. In the
equation onto the Hilbert space of the system of interest. Thstatistical physics literature this perspective implies a con-
approach used to derive the GME herein is based on thegaction on the total density matrix onto a prescribed sub-
experimental observation of non-Poisson dichotomous sigspace. Consequently, constructing the equation of motion of
nals. Examples of such signals include those produced bthe total density matrix should be the first step. The reason
ionic channeld17] and by blinking quantum dotsl0]. We  why we reverse the perspective, thereby confining the total
build up a GME that is compatible with the experimentally density treatment to the next section, is due to the fact that
determined non-Poisson nature of these processes, assumimgn-Poisson statistics has the effect of making the ordinary
the applicability of renewal theory. We leave open the quesapproach extremely difficult, if not impossible, as discussed
tion as to the source of randomness, but note in passing that the companion papef48,20. The derivation of the GME
the fluctuations in the system variable are generated by this made possible by expressing the higher-order correlation
environment. A simplified dynamical model has reproducedunctions in terms of the second-order correlation function,
the essential statistical properties of the system of interest, imia simple expressions that are violated by the non-Poisson
the case of infinitely aged GMEL8]. In the case of arbitrary statistics. This is the reason why we derive the GME from
age, not only a first principle derivation is missing, a condi-the continuous time random wallCTRW) of Montroll and
tion shared by the infinitely aged case: there is, to date, ndiVeiss[8,21], rather than from the equation of motion for the
even a heuristic derivation of the corresponding GME.total distribution density.
Herein we provide a heuristic derivation of a GME with ) )
arbitrary age, one based on an exact expression for the coft: From the generalized master equation to the age-dependent
responding distribution of sojourn times, and we use this correlation function
result to derive an exact expression for the correlation func- The reduced density matrix perspective is based on the
tion. adoption of the GME formally defined by

Il. THE REDUCED DENSITY PERSPECTIVE
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d t the first laminar region is extended in time more than the
d_tp(t):_f O(t-t')Kp(t')dt’, (2)  time intervalt, between preparation and observation. The
0 second term takes into account the cases when the last lami-

wherep(t) is them-dimensional population vector afisites, ~ har region began after the preparation time, after a sequence
so that itsith componentp(t), represents the probability of Of an arbitrarily large number of earlier laminar regions, the
finding the walker at time in the ith site. statesk is a  first of which, of course, begins &t —t,. _
transition matrix between the sites addt) is the memory In the Poisson case, because of its unique functional form,
kernel. We study the case where the fluctuating varigble there is no dependence g on t,, and consequently no
leading to this GME is dichotomous. This means that the2ding. In the non-Poisson case, on the contrary, the two

GME has only two states and the matKxreads waiting-time distributionsy_and (t), are identical only if
t,=0. In this case both CTRW and GME correspond to
K = ( 1 - 1) 3) switching-on the observation process at the same time as the
-1 1) preparation process, and the connection between the two pic-

L L . tures is given by Eq(4).
The waiting-time dlstrlbuthn in either of t_he two states is Allegrini et al. [7] proved that the GME is compatible
d?”Oted byyAt). We estabhsh the connection of the GME i ap infinitely aged CTRW, provided that the memory
with the CTRW[7,8] by relating the Laplace transform of yerneld(t) is made compatible with an infinitely aged con-
the memory kerned(t), given byd(u), to the Laplace trans-  dition, characterized by a distribution of first sojourn times,
form of the waiting-time distributioni(t), given byy(u), as  Which is infinitely aged. In this casg— c so that
follows:

= quc(u)
. ug(u) Do (u)=— 2 s )
P(u) = ————. (4) 1 +4(u) = 24fr.(u)
U C) where
We consider two distinct processes, that of preparation 1 (*
and that of observation. The preparation process establishes () = — J dt’ yq(t'). (8)
the initial conditions of the set of trajectories under study. A (nJ,

trajectory is a sequence of symboils or —, specifying
whether the system is in the state) or |—). We call the time
interval with the system either entirely in the state) or
entirely in the statd—) the laminar region. With Zumofen

It is straigthforward to extend the calculations of Réf] to
the case of an arbitrarily,-old system, so that Eq7) is
replaced with

and Klafter[22], we assume that the preparation process, ufp (u)
beginning at timet=-t,, insures that all these trajectories P, (U)=—— "a - , (9)
begin with the system at the onset of a laminar region, either @ 1+ (u) — 245 (U)

a

+ or —.
. The (_)bservgtion process beg_ins at tite0=-t,. The Where,:/,ta(u) is the Laplace transform Qt,ta(t)_
distribution of first sojourn times is denoted By (t) and is, Using the GME with thet,-old memory kernel, we define

in general, different fromy(t). In fact, the laminar region the age-dependent correlation functid}ga)(t) through its
corresponding to the first sojourn time might have begun gplace transform, as follows:

earlier thant=0. The exact expression for this time distribu-

tion is éga)(u) = (10)
2t u+ 2P (u)
Y (D= gL+t + n§::1 0 dy gy +Den(ta=y). (6 This prescription corresponds to setting
. . ) B = Dot
where ,(7) denotes the probability that jumps occur dur Plet) = P1(t) — palt) (1)

ing the time interval of lengtfr, the last of which occurs at

. . ; P1(0) = py(0)’

time t=7. As is well known, for a renewal process the wait- ) ) )

ing times for successively more jumps is given by the con-2S One can easily check by Laplace transforming both sides
volution and using the GME with thg,-old memory kernelsee Sec.

II B). old memory kernel. In other words, the correlation
B ! , N g function of arbitrary age mirrors the extension of the On-
Un(D) = fo Ynea(U) i (t - )t ®) sager principle, which is usually limited to infinitely aged
systemg 7], to physical conditions of arbitrary age. It has to
with (t) = y4(t). Thet,-old distribution of first sojourn time be pointed out that at this stage there is no guarantee that the
was discussed earlier in some defaiB]. However, a careful Onsager principle of arbitrary age holds true. However, in
analysis of Eq(5) can help the reader to realize the rationaleSec. Il B we show that Eq(10) yields the exact result of
behind this distribution of sojourn times. The first term on Godréche and Luckl4] for the corresponding correlation
the right-hand side of Eq5) corresponds to the case when function. Furthermore, in Sec. 1l C we establish the same
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result using arguments based on trajectories rather than den- U+ D, (W18 o+ D (WS ir + 5
sities, thereby affording an independent construction of the p;(ulk,0) :[ tal ALK tj‘( (ke "k_l)_
exact expression for thig-old correlation function. All this ufu+2d, (u)]

can be thought of as a compelling demonstration of the cor-

rectness of Eq(11), extending the Onsager principle to con- (15
ditions of arbitrary age. Using Eq.(15) we can Laplace transforiti2) to obtain
- . . . u+<i)t(u) u+(i)t(u)
B. Derivation of the exact expression proposed by Godreche CDga)(u) = p,(0) a n a

and Luck: The probability perspective u(u + 2<i>t (u) P2 u(u+ 2<i>t (u)
a a

To establish that the proposed approach yields the exact - -
expression of Godréche and Lugk4], let us express the —p.(0) P, (W) — 0,0 ®,W
t,-old correlation function through the probability vector P1 u(u+ 2 (u)) P2 u(u + 2p (u)).
=(py,p,) for the dichotomous variablé=+1 to have either fa a
positive (state ) or negative(state 2 values. We have that (16)

We note that the probability is normalizep(0) +p,(0)=1.

(£0)&M) Thus, it follows that

) == 5= =POP(LL=0 + 0Pt =0) TS TIOTONS
) u+ o, (u) d)ta(u)
= p1(0)p,(t[1,t=0) = px(0)py(t[2,t = 0), (12 Cfoa (u) = 2 - -
u(u+2P (u))  u(u+ 20, (u))

wherepj(t|k,t=0) is the conditional probability that the vari-
ableé is in the statg at timet, given that at time&=0 it was X[P(0) + p2(0)]
in the statek. This means thap;(t|k,t=0) is obtained letting _ 1
those trajectories evolve that at tire0 had¢ in the statek. B + 29 ( )’ (17)
For a straightforward evaluation qn‘j(t|k,t:0), we use the u AL

GME formalism, adapted to thig-old system, and we take confirming the correctness of the definition introduced in Eq.
into account the initial conditiom;(0/k,t=0)=& x. Accord- (1), Substituting(9) into (17) we obtain
ing to the GME the components of the conditional probabil-

ity vector are determined by () = 1 _ 1[ Zz}ta(u) }
§ - ~ - - ~ 1
d t 2 1+ lrbta(u) u 1+ ¢(U)
iy — - _ ’ Y A (t! - u 2 = =
dtp](t|k’t 0) fo dt (I)ta(t t )z ‘<J|pl(‘t |k’t 0)! 1+ w(u) _ 2¢ta(u)

(13) (18

. _ _ which coincides with the results of Godreche and L{t4].
with @ (u) given by Eq.(9) and the elements &t given by  Furthermore, the ratio of the differences in probability is

Eq. (3). determined in Laplace space by
By Laplace transformingl3) and doing some algebra, we A A )
obtain P1(u) — Po(u) _ (J1i = J2)pi(0) _ 1 = pta(y)
, P10 =PA0) 5 PO PO a2 W)
Bi(uk,0) =X [ul + d_(WKI'pi(0k,0).  (14) (19)

= As pointed out earlier, Eq.19) means that one can extend
the Onsager principle from the infinitely aged systems, for
which Onsager originally defined it, to systems of any age.
- - In the latter case the relaxation is proportional to theld
u+d (u) @, (u) correlation function, not to the infinitely old, or equilibrium,
- - correlation function. In summary, we discovered an Onsager
ufu+ Z@ta(u)] ufu+ Z(DIa(u)] principle of arbitrary age, at Iegst in the special case of the

Defining the matrix

J=[ul +d (WK =

‘I’ta(u) u+ (I)ta(u) dichotomous variables considered in this paper.
ufu+ 2<i>ta(u)] ufu+ Z&Dta(u)] C. Derivation of the exact expression proposed by Godreche
and Luck: The trajectory perspective
and using the initial conditiom;(0|k,t=0)=6, we obtain It is possible to again derive the exact result of ELp)
for the Laplace transform of the conditional probability vec-from a different perspective, which will allow us, in Sec. IV,
tor the following expression: to propose an analytic expression for theold correlation
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function as a function of time. This expression, as we shall . * . t .
see, is not exact, but it is shown numerically to be a very P (®) =W (1) EJ dt'g (1) =1 —f dt’ys (t').
good approximation to the exact result. t 0
The usual method of connecting the correlation function (25)
®, to the waiting-time distribution, within a trajectory per-
spective, is to introduce a theoretical waiting-time distribu-
tion, ¢ (t), which cannot be observed directly. In fact, the
experimental waiting-time distribution, namely, the distribu-
tion of times with alternate signs, denoted by usy#éb, is
obtained from the theoretical waiting-time distributiaf(t), 1. 1., 1, 1.,
by adopting the following procedure. We divide the time axis (0= E‘ﬁta(t)* o + 5‘” (t)+ E‘ﬂ m*i‘” O+,
into bins, whose size is determined by the waiting-time dis-
tribution ¢ (t). Then, these bins are assigned either the value (26)
1 or the value —1, by tossing a coin to make the decision. liyhere the symbok denotes time convolution. In fact, after a
is evident that the intervals along the time axis with the samejrst interval of time followed by a coin toss with no change
sign, are larger than the time bins determined/bft), since  of sign, determined by /2, the next intervals of time with
two or more consecutive coin tossings might have producego change of sign according to the coin tossing prescription,
the same sign. It is showji22] that the Laplace transform of are determined by /2. The sum of the convolutions takes
¢ is connected to the Laplace transformyofvia the relation  jnto account all the possible sequences of intervals of time
. with no change of sign before a change of sign of the vari-
A (V) able ¢ eventually occurs, and gives as final result the distri-
Plu) = 5_ zAp*(u) : (20 bution for a first observed sojourn timef the variable¢ in
one of its two states, that i$[a(t).
Let us use the terneventto denote the coin tossing intro-  Thus by summing the geometric series in the Laplace
duced above. The expressi¢20) is the result of summing variables, from(26) we obtain
over all possibilities of not changing sign with a coin toss,

It is straightforward to show that thig-old experimental
waiting-time distribution and thé,-old theoretical waiting-
time distribution are connected through the following sum of
convolutions:

which turns out to be a geometrical series in the Laplace . fpfa(u)
representation. The correlation functidny and the theoreti- (W)= —"—— (27)
cal waiting-time distribution functiony” are connected 2=y (u)
through the relation Using Eq.(20) we write Eq.(27) as
| a2 e 7= 2 (29
)= (20) S /()
By Laplace transforming Eq25) and using Eq{(28), we
where the average waiting time is given by obtain
* * ~ 1 - y (U) 2" u
(7 Ef T (1)dT. (22 (Dga)(u) = L _1 1- l’bti( ) , (29)
° uooul 1w

Equation(21) determines that the correlation functidr(t) namely, we again recover the exact result of Godreche and
is equal to the probability of finding a window of length  Luck given by Eq.(18). This establishes the equivalence of
without internal events. the trajectory and GME prescriptions for this process.

The same result can be immediately recovered using

D. Generalized master equation of arbitrary age

D) =W, (1) = f

t

= I R R
Ayt = f dt’ f dty ().
t !

We are now in a position to make a preliminary balance of
the results obtained so far. The first is that we have general-

(23 ized the result of an earlier pagét], in that we have derived
We note that, see Reff7] the GME of arbitrary age
d t
. i —p(t) = -J @, (t=t")Kp(t)dt', (30)
0= 5| ariw) (24 R P
t

whose memory kerne(bta(t) is defined though its Laplace
is the infinitely aged waiting-time distribution. Actually, Eq. transform by means of E¢9). We have also shown that the
(23) is the infinitely aged correlation function, a special caseOnsager principle, valid for infinitely aged systems, can be
of the more general prescription extended to conditions of any age, and that this extension
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allows us to derive an exact expression for theld corre- z
lation function. However, the analytic results obtained so far r=2"71
are in the Laplace domain. It is desirable to achieve them in

the time domain, as well. We now turn our attention to theand the parameteF, characterizing the waiting-time distri-
latter. bution of Eq.(32) is

(33

IIl. THE LIOUVILLE-LIKE APPROACH == (34)

In this section we derive another expression fortfheld  in accordance with the normalization constraint. The authors
correlation function adopting a perspective where aging i®f Refs.[7,18] have shown that the essential properties of the
determined by the out of equilibrium bath for the variable ofdichotomous non-Poisson fluctuation can be accounted for
interest, & There might exist conditions, as we shall see,by limiting ourselves to this simplified picture, involving
where equilibrium is not even allowed. The expression foronly the semi-interval0,1]. In this simple picture the aging
thet,-old correlation function afforded by this perspective is process is described by
exact, and is thus equivalent to the Godreche and Luck ex-
pression of Eq(18). However, the exact expression is im- Ppy.Y _ i

: * =AY p(y,) +Ap(LY), (35
plicit, rather than explicit, and is therefore more convenient ot
for the numerical calculations done subsequently.

Here we adopt the perspective of earlier wbild,2Q to
account for the aging effects characterizing the fluctuation
of the dichotomous variabl€. These fluctuations occur

while the environment of the variablé, slowly drifts. This Using the results of Ref20] the t,-old correlation func-

d_r|ft|ng Process 1S ext_ended over time, and pould _Igaq WQion is evaluated as follows. The bath is prepared at time
circumstances where it is not possible to attain equmbrlung_t This means that at time=—t, the distribution ofy
ar a

asymptotically. In keeping with the jargon of statistical me-iin the intervall is flat. In the case< 2 this distribution
chanics the environmental or “irrelevant” variable is caled tends to the equilibrium distributiopgg 1/y>L. If z> 2 this
eq .

and in the model moves in the interiat[0, 2]. In the semi-  yiuin tion diverges, thereby implying that the distribution
interval [0,1], we use the equation of motion for the prob- 5oh164ches the Dirac delta function located/a0. This is
ability density the nonstationary condition, the condition where equilibrium
is not allowed, and only a condition of eternal drift is admit-
ap(y,t) . ted. Suppose this distribution evolve for a tirpg without
e _Aﬁ_yy py,t). (3D our observing it. This means that we begin the observation
process when the system has a new distribution, different
from the initial flat distribution, and determined by its time

which takes into account the back injection into the semi-
interval, occurring with uniform probability, when the par-
ticle reaches the point=1. For simplicity, but with no loss
of generality, we fix\=1.

This is the motion determined by a potential, with the mini- . _ _ .
mum aty=1, in the over-damped case. In the interMgP], e>v(()) Ilétlon3f5ro.mt_ Ita todt—_(t)r,] (éesggbed by Eq(35). Fort

the overdamped potential is the mirror image of the potential” 9. (35) is replaced wi a(31)

acting on the left interval. Consequently, if the initial condi- ap(y,t) J,

tion is located in the internal part of the interVid, 1], the o H_yy p(y,t), (36)
particle moves, from the left to the right, with a deterministic

motion, towards/=1. If the particle is initially located in the namely the back injection process is stopped, thereby imply-
interior of the interval1,2], it moves deterministically from ing that the population decreases.

the right to the left. When the particle reaches the potential The theory of Ref[20] relates the probability solution to
minimum, it is injected back, with equal probability, into any the Liouville-like equation to theé,-old correlation function

of the points of the interval excludingy=0,y=1 andy=2.  as follows:

The time spent by within | corresponds to sojourning in 1

one of the two states of the varialdeeither|+) or |-). The @?a)(t) :f dy ply,b). (37)
instant of back injection corresponds to the choice of the new 0

state and, with equal probability, this is either the same state o N ) )

or the other state. The variabjerepresents the environment Note that the initial conditiomp(y,0) is obtained from Eq.

of the variable¢, and its initial distribution is given by the (35 moving from the flat distribution at=-t,. The time
state of the bath. The corresponding waiting-time distributiorgvolution, corresponding to the observation process, is deter-

between two consecutive back injections is mined by Eq.(36). This simple picture is a fair representa-
tion of the description made in terms of trajectories in Sec.

II. The fact that the norm ogb(y,t), whenp(y,t) is described

-1
Y (t)=(u-1) ™ , (32 by Eg. (36), is not conserved, reflects the occurrence of
(t+T)* jumps from one state to the other, making the population of a
given state decrease. Let us remark that the correlation func-
where the indexu is related toz of Eq. (31) by tion is determined by the antisymmetric part of the whole
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distribution [20]. This formal condition corresponds to ob- . e
serving the time evolution ob(y,t), with y ranging fromy v (1) =f ¢ (n)dr. (41
=0 toy=1, under the action of E¢31), with no back injec- !
tion process. The process of back injection is essential tqhis notation for the survival probability is also used in Sec.
determine the correlation function of arbitrary age. Howeverjv A. We notice thatt>0 andp(1,t) is calculated from Eq.
once the parametet, is fixed, and with it the age of the (35) with y=1 and +,<t<0. This is an exact expression
correlation function, the evaluation of the correlation func-that turns out to be convenient to numerically check the pre-
tion is done by imagining the bath frozen in the distribution scriptions of Sec. IV.
corresponding to this fixed age. This is the reason we use Eq. |t is worth using the perspective of this section to shed
(31) to determine the correlation function rather than Ed.further light into the problem under discussion in this paper.
(39). Let us notice the following.

The process of back injection is essential for the slow |f the age vanishe,— 0, then thet,-old correlation func-

environmental drift, but the correlation time of ageis de-  tjon reduces to the probability of no event occurmga)(t)
termined by the age-fixed condition, the bath beigp@ld, ().

and keeping this age forever.

Our goal is to calculate the correlation function of arbi-
trary age. According to Eq37), this goal requires that we
evaluatep(y, 1), first. To carry out this calculation we follow — P¢(t), where
the procedure illustrated in detail in R¢24]. The time evo- 1
lution from t=—t, to t<0 is described by Eq35), yielding Pt) = 22D (42)
for the solution [1+(z=D1]

If the age increases without limif— o, then thet,-old
correlation function reduces to a known resmlt(ga)(t)

is the usual correlation function calculated at equilibrium.

B 1 So, we must observe a crossover between two distinct re-

ply,t) = [1+(z- D)(t+t)y? @D gimes. Moreover, we anticipate that we recover these results
. from a different perspective in Sec. IV.

p(l,7)dr The perspective adopted in this section makes it easier to

(38) understand, on physical grounds, why the non-Poisson con-

dition produces aging. The Poisson condition corresponds to

with p(1,7) determined, in turn, by Eq35). z=1 in the nonlinear dynamical process of Eg85), and in

As already stated, fot>0, p(y,t) is governed by Eq this case the distribution is always flat. Aging is the process
(36), so that its soluti’on is gi’ven t'he initial value " of slow regression of the bath variable to equilibrium, a pro-

cess that can, in principle, last forever. With this representa-
tion it is possible to study the correlation function of arbi-

[T+ (- D(t- Dy e

t) = P(,0) . trary age also in the case>2. Allegrini et al. [20] give a
p(y,t) 112(z-1) . ; . -
[1+(z-Dy*t] 7=yl + (z- Dyz 4tz detailed discussion of the effect of external perturbations.
(39) In the casez< 2 equilibrium is possible. An external per-

turbation can be used to create a condition whereby the sys-
Now, we can calculate the final expression for the age!€Mm is out of equilbrium. The observation of the population
dependent correlation function given by Eg7). After some  difference between the two statés;1 and¢=-1, is equiva-

simple algebra we obtain the following expression: lent to determining the correlation function. Note that the
initial condition that we use to study the time evolution of
1 p(y,t) during the observation process, E86), is the anti-
() = 1 T =) symmetric distribution of the intervdD,2] folded into[0,1]
[1+(z-D(t+t)] (see Ref[20]). It is evident that in practice the equilibrium
0 p(1,7dr correlation function is never observed. In fact, the external
[+ z-1(t- 7_)]1/(2—1) perturbation should create a nonsymmetric initial condition
a in the whole interval0,2]. The antisymmetric portion of this
R 0 p(1,ndr distribution, folded into the intervdl0,1], should create the
=W(t+ty) + [1+(z-1)(t- V=D same out of equilibrium distribution as that produced by
“a folding in the same way the anti-symmetric portion of the
=W (t+ty) +[1-P(t)] equilibrium distribution. As pointed out in Ref20], this is
0 impossible to do in practice wita a perturbation lasting for
p(1,7dr a finite time, and, thus, with any realistic experimental pro-
o [L+ (- -]y cedure.
0 p(1,7dr (40) IV. AN ANALYTICAL EXPRESSION OF THE

- . [1-(z- 1)7.]1/(2—1) ) CORRELATION FUNCTION OF ARBITRARY AGE

The exact expressions, E@.8) and Eq.(29), allow us to
Note that in Eq(40) we are using the definition determine the dependence of the age-dependent correlation
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function on time via inverse Laplace transforms. This inver-tained fromy(t): in fact, if in Eq. (5) we make the substitu-
sion is done numerically since we are unable to carry oution J(t) — ¢ (t), we obtain exactly Eq45), i.e., the defini-
direct analytic inversion of the Laplace expression. There ision of ,p: (t).
therefore the need to find an analytical expression for é
Cbga)(t), even if the price we pay is an approximation and the
loss of exactness. This section is devoted to the derivation of
an accurate, albeit approximate, analytical expression for the
correlation function of arbitrary age. As we said, Eq(43) is exact. Consequently, this equation
is expected to be equivalent to the exact expression proposed
by Godreche and Luck in Ref7]. In this subsection, as a

B. Equivalence with the exact expression of Godréche
and Luck

A. An exact implicit expression for the correlation function double check, we prove that E@L3) is in fact equivalent to
of arbitrary age the expression of Godréche and Luck. and To do that, let us
differentiate both sides of this equation with respect to

We write q)ga)(t), namely the probability of not finding
events inside the intervdD,t), given the occurrence of an
event at time t,, in the following implicit form:

obtain

ta

* d ( )
dty (ta— t|)d—t<bg' (t).

t

S =y trty + f

a dt o
DL(1) =W (t+1,) + f dty (ta—t)@L(D). (43 (46)
0
This is the probability of finding an event at a time larger A more fractable expression is obtained by taking the
thant from the preceding one. The right-hand side of Eq.Laplace transform of this new expression with respef to
(43) is the sum of two terms, the first corresponds to no even@btain
occurring in the whole interval-t,,t) and the second term A A t A d.
takes into account the possibility of at least one event occur-d—tcp(;)(t) =- est{ (s) — f dy ey’ (y)] + lp*(s)d—tcb(;)(t),
ring between t, and 0. The instant tr signals the first of 0
these eventgor the event, if there is only oneThe coin- (47)
tossing procedure has the double effectrejfivenatingthe
procesgthe correlation function now has ag¢ and of fac-  from which it follows that
toring the two probability functions inside the integral.

. . . . . . ~ t .
It is interesting to notice that Etﬁ43) is exact, Whlch can T (9) - J dy e (y)]
be verified by differentiating both sides of the equation, and <9 0
making use of25) and (41). This procedure yields TR t=- - . (48
t 1-4(9
()= (t+1,) +f dtlzﬁ*(ta—tl)w:l(t), (44)  The right-hand side of this equation appears formidable, but

: 0 one can easily see by Laplace transforming Egl) with
namely an implicit (but analytid expression forz,//:. A respect. tat,, that it is nothlng*more than thg*LapIace trans-
straightforward iteration of44) leads to : form with respect tot, of —¢, (1), namely —y(t). Conse-

. quently, by inverse Laplace transforming E48) we obtain

W (O=¢ (t+t) + f Sty (G-t ()

d *
0 e O=-y 0, (49)
ta ty
+f dty g (ta‘tl)j dby (b —t) ¢ (t+1y) which, by integration, yields
0 0
t
ta t D4y = a0 — *
’ J dtyy (ta - tl)f dty (t—t) Pt =00 Jo - 50
0 0
t The initial value of thet,-old correlation function can be
Xf dtggf (=t (t+tg) + -+, (45) determined by explicitly Laplace transforming Eg3), cal-
0 culated at=0, with respect td,, thereby yielding

i.e., a sum over all possibilities of finding events at both - -, A
timest and -t, with no events between 0 artd This is OE(0) =W (s) + ¢ (999£(0), (51)
exactly the definition of,b:a(t). In detail, the first term in the  \yhich simplifies to

right-hand side of45), corresponds to the case in which no

event occurs in the interval=(-t,,0], while all further [1-¢/ (91D (0) =¥ (9).

terms refer, respectively, to one eventah I, to two events, . .

att; andt,, in I, and so on, with; <t,<tz<---. Note that On the other hand, we know thdt' (s)=[1-4(s)]/s, so the
l//:a(t) is obtained fromy/(t) in the same way,//ta(t) is ob- initial Laplace variable is
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P(0) = 1/5.
It is obvious that the inverse Laplace transform of this last
expression yields the initial condition for the correlation

function (i)“a)(O):l, as it must be, based on the definition of
Eq. (1) whent;=t, and é=+1, a dichotomous variable. Us-

ing this initial condition in(50), it follows that £
)
t
D) =1- J dty i (ty) =W (1), (52)

0
which, as we know from Sec. II, coincides with the exact
expression for the,-old correlation function of Ref.14].

0.001 : .

1 10 100

C. Approximation through iterative expansion,
and truncation FIG. 1. Thet,-old correlation functionfbfg‘(t), for different val-

Although we established that E¢43) is exact, due to its ues oft,. Curves represent a numerical integration(@) with z
implicit nature, it cannot be used to obtain an :’;\nalytic func-:S/3 andr=1.5, while dots correspond to the approximate formula
tion without carrying out a reasonable approximation. The(54)'

approximation we select rests on replaci@é")(t) in the
right-hand side of Eq(43) with the functionA%)(t), which

denotes a correlation function of uncertain age, which is
however, younger than thg-old correlation function defined

t,=. The correlation functiorﬂ)ifa)(t) has a faster decay,
with decreasing values a@f. Finally, the lowest curve repre-
Sents the correlation function with zero age, nam]z(g(t).

by Eq.(43). This correlation function reads The symbols in Fig. 1 overlaying the continuous curves rep-
resent the calculations using E&4) with various ages. We
“©) D) = De(t+1ty) see perfect agreement fgr<(t) and fort,>(t). The agree-
Al'(t) = . (53 . . . L
1-Dyt,) ment remains good for intermediate values, with discrepan-

) _ ) cies comparable to the numerical round-off errors.
The easiest way to derivib3) is to adopt the language of

conditional probabilities. The numerator of this expression is

the probability of not finding an event between 0 andi- V. PHYSICAL CONSEQUENCES OF THE RESULTS

nus the probability of not finding an event betwedp andt. OBTAINED

If we call A the condition of no event in the interval . . .

(0,t), andB the condition of at least one event in the interval _ The results of the earlier sections establish that the GME
(~t,, 0], then the numerator of the right-hand side(s®) can ~ Of arbitrary age, proposed in this paper, K80, fits the

be identified with the joint probabilitP(A, B). On the other requirement of complete equivalence with the current litera-

hand, the denominator ¢63) is simply P(B), the probability tl:re o?hn;)n-ID_O|§?on :ene\(/jvall proces?es. It |sP|mportantt tt.o
of the eventB occuring, and therefore the functioha(t) — Soooo nata significant model, generating non-roisson statis-
tics from a renewal process, has been proposed by Bouchaud

can be identified, as it should, with the conditional probabi- . . S
lily P(A|B), namely with the probability of finding no event and otherd25,26. This m_odel has ralsed wide interest and
has recently been applied to a variety of pheonomena

between 0 and (i.e., it is a correlation function given an [27-31]
event between tz and 0(i.e., it has an age younger thg. .

Finally, by plugging Eq/(53) into Eq. (43 we obtain The Bouchaud trap model refers to the spin-glass dynam-

ics, which is modeled with a set of branches, with different
Dy(t) - DAt +1,) energiesE, having a distribution

(ty) " At
DU(1) =W (t+1,) +[1 -V (t,)] o)

(54 P(E) = By exp(— ByE), (55
This expression is not exact, but it is analytic. Moreover, thewhereTy= 1/ is the glass transition temperature. For each
form of Eq.(43) suggests an iterative approach, and we carbranch this model assumes the Arrhenius prescription
therefore refine our result, by replaciﬂgg')(t) with Ata(t),

after an arbitrary number of iterations. In Fig. 1 we check the t=t, exp(BE), (56)
accuracy of the first-order approximation to the exact expres-

sion given by(54), by comparing it to the exact prediction of where T=1/8 denotes the sample temperature, dntthe

Eqg. (40). The curves in Fig. 1 represent a numerical treattime necessary to overcome the barrier of inten&tyby
ment of (40) with different values oft,. In this examplex ~ means of thermal fluctuations.

=2.5 andT=1.5 (as said,A=1). The highest curve in the Thus, using the relationship between the energy distribu-
figure represents the stationary correlation function, namelyion and the waiting-time distribution,
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Y(t)dt=p(E)dE, (57)

after some simple algebra, these auth@$,26 obtain an
inverse power-law waiting time distribution

tV
WO = v, (59)
where the power-law index is given by
v= Pq (59)

For > B, the resulting waiting-time distribution asymptoti-
cally corresponds to that of E(B2), with . <2. In this case,

the stationary GME, namely, the infinitely aged master equa;
tion, does not exist, and we have to consider conditions fo
the system always being out of equilibrium. The approacr‘[';l
discussed herein does not have any limitation, even if it is
inspired to original work done moving from the stationary

condition[see Eq(7)].

PHYSICAL REVIEW E 71, 066109(2005

address fundamental issues such as the emission and absorp-
tion process. This leads us naturally to using the GME we
derived in an previous section. If an out of equilibrium con-
dition is created at a given tintg, then after the preparation

of the material, we predict the relaxation process of the quan-
tity

T1(t) = py(t) = pa(t) (65)

to be driven by

d t
L) = - f dt' D, (t - t)II(t')dt'.
dt O

(66)

It is important to stress that this result rests on a GME that
pas an origin different from the prime principle procedure
dopted, for instance, by Zwanz[d?2], being essentially
ased on experimental observation. Is this compatible or not
with a Liouville or Liouville-like treatment? This is an im-
portant issue that is discussed in the next section.

It is important to stress that there exists increasing interest

in understanding the blinking quantum dot phenomena. In
addition to the paper by Jurgt al. [10], we mention here
more recent referencg9,11,32—-37. The work of Brokman

VI. CONCLUDING REMARKS

The central result of this paper is the generalization of the

et al.[9] proves that these processes undergo the same forfAME discussed in Ref.7] to one of arbitrary age. Another
of aging as the Bouchaud trap model, thereby involving, als¢esult, closely related to the GME of arbitrary age, is the
in this case, the non-Poisson renewal perspective. It is imgeneralization of the Onsager principle to physical condi-
portant to stress that in this field the recent work of Vetetrk tions of any age. The validity of this generalization of the
al. [37], addressing explicitly the issue of the intermittent Onsager principle is confirmed by the fact that Etf), the
fluorescence of blinking quantum dots, rests on a model thadeneralized Onsager principle, yields E@8), and this is
turns out to be equivalent to the Bouchaud trap model. IFfhown to be equivalent to the exact prescription of Godreche
fact, according td37], the electron responsible for the fluo- and Luck, which is independently rederived in Sec. II C.

rescent emission is trapped at a distanegith probability

p(r) =aexp(— ayr). (60)
The recovery probability is
k(r) = (1tg)exp(— ayr), (61)

implying that the electron is trapped for a timgiven by

t =ty explayr). (62)

Another interesting result is given by E@4). This is an
analytical expression fot,-old correlation function, whose
accuracy has been established using @&¢) which is an-
other exact expression for thgold correlation function, de-
termined by the Liouville-like approach of Sec. Ill. In the
special case of non-Poisson processes where the function
J/ (t) has the form given by Eq32), the approximate ex-
pression Eq(54) turns out to be very accurate. Of course
there might be non-Poisson processes where(B).is not

It is evident that this model is equivalent to the Bouchaud®S accurate as in the case presented here. However, the itera-

trap model. To realize this fact it is enough to replace th

energies of the Bouchaud model with the distanagesf the

dive procedure discussed in Sec. IV C, allows us to determine

higher-order corrections, should they be necessary for a more

model of Ref[37]. The conclusion is that also in this case anS&tisfactory treatment.

inverse power law is generated,

tl/
Ylt) = vtl—i’v, (63)
where

y=2p (64)
Ay

It is important to understand why E¢p4) is not exact, in
spite of the fact that the approximation made for its deriva-
tion seems to fit the renewal nature of the process under
study, where any jump resets memory to zero. This is a con-
sequence of the infinite memory generated by non-Poisson
dynamics, in spite of the fact the random events reset the
memory to zero. The evaluation of the correlation function
involves probabilistic arguments, and with them the infinite
memory associated with the probabilistic treatment of non-

If a,<a, we obtain a waiting time distribution with a di- Poisson processes.
verging first moment, corresponding to the blinking quantum We illuminate the meaning of the correlation function of

dot condition[37].

arbitrary age by means of the Liouville-like density ap-

To move from the physics of spin glasses to the physics oproach. The observation of the process of regression to equi-
guantum dots, as we plan to do in future publications withlibrium of the population difference corresponds to evaluat-
the help of the results of this paper, it becomes important tong the antisymmetric distribution, while leaving the
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symmetric part of the distribution free to evolve. If the dis- There already exists in the literature at least the discussion
tribution is at equilibrium, the symmetric part corresponds toof one casg19] that seems to be a natural consequence of
the equilibrium distribution and the integral of the left por- this property. Sokolov, Blumen, and Klaftgt9] derived an
tion of the antisymmetric part, without back injection, re- exact density equation to describe a subdiffusion process.
gresses to zero as the corresponding equilibrium correlatiomhis equation corresponds to brand new initial conditions.
function. For any other Condition, the integral of the left This means a condition Whetgzo Then’ these authors per-
portiorj of the anti_symmetric part regresses to zero with afyrbed this equation with a time-dependent field, and found
analytical expression depending on the time at which obsety; the theoretical result conflicts with the behavior of the
vation begins. The regression continues as a function of thgg¢TrR\w under the influence of the same perturbation. This
specjfic initial condi_t@or! wh.ile the symmetric part kee_ps apparent contradiction arises because the time dependent
moving towards equilibrium independently of the pOpulatlor‘perturbation corresponds to additional observations, taking

difference. This explains why the regression to equilibrium . . S .
depends on the initial condition, of any age, with no furtherplace at different time values, none of them coinciding with

dependence on the bath dynamics that keeps drifting towarc}Ee observation time, pUt the pgrtur_batlorlat). Th's IS true,
equilibrium. This also explains why an emission or absorp-Whatever the observg.tlon t'me. 1S, eitgr 0, as in Rgf[lg],
tion spectrun{11] is not stationary and changes with time. ©" = ta>0, @ condition requiring the GME of this paper.
The resonant radiation establishes a connection between tigegardless of the observation time that we assign to the
antisymmetric and the symmetric parts of the distribution, GME, it is impossible to make the GME prediction identical
thereby updating observation to the changing bath condito the CTRW prediction, if we require the perturbation to
tions. remain external to the system. The concept of perturbation
It is worth ending this paper with some further remarksitself turns out to be inadequate to study non-Poisson pro-
about these theoretical problems. We have built up a GME ofesses, regardless of its intensity. Thus the results of the
arbitrary age, using an empirical approach. Is it possible tgresent paper, in addition to shedding light onto the implica-
derive the same GME by using a Liouville-like approach? Intions of Ref[19], imply a violation of linear response theory.
principle, we should use the Liouville-like picture of Sec. lll, The only possible way to make the density compatible with
to derive, via contraction on the bath variables, the saméhe trajectory picture is to make the external perturbation
GME, of arbitrary age, as that of Sec. Il D. However, it is become a part of the system under study. This means that we
evident that this effort, even if we were successful, would behave to build up a totally new, field-dependent, GME, along
of limited help, for practical purposes. Suppose, for instancethe lines of Ref[11]. This sets a limit on the applicability of
that we have to study the response of the system to an extethe GME of arbitrary age found in this paper. However, this
nal, time dependent, perturbation. Would the GME of arbi-result seems to support the conclusion that the trajectory-
trary, but fixed, age, be useful for this purpose? It is evidentensity conflict, revealed by Bologna, Grigolini and West
that it would not. In fact, the external perturbation at times[13] might be a consequence of the aging properties emerg-
different from the age of the system would produce effectdng from non-Poisson renewal process.
departing from the more realistic approach resting on per-
turbing trajectories. In the specific case of the absorption
spectrum of blinking quantum dof&1] the authors, in fact,
adopted this trajectory perspective to make a theoretical pre- G.A. and P.G. thankfully acknowledge ARO for financial
diction that is incompatible with the perturbation of a GME support through Grant DAAD19-02-1-0037. P.G. acknowl-
of fixed age. edges Welch for financial support through Grant 70525.
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