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We study a two-state statistical process with a non-Poisson distribution of sojourn times. In accordance with
earlier work, we find that this process is characterized by aging and we study three different ways to define the
correlation function of arbitrary age of the corresponding dichotomous fluctuation. These three methods yield
exact expressions, thus coinciding with the recent result by Godrèche and LuckfJ. Stat. Phys.104, 489
s2001dg. Actually, non-Poisson statistics yields infinite memory at the probability level, thereby breaking any
form of Markovian approximation, including the one adopted herein, to find an approximated analytical
formula. For this reason, we check the accuracy of this approximated formula by comparing it with the
numerical treatment of the second of the three exact expressions. We find that, although not exact, a simple
analytical expression for the correlation function of arbitrary age is very accurate. We establish a connection
between the correlation function and a generalized master equation of the same age. Thus this formalism,
related to models used in glassy materials, allows us to illustrate an approach to the statistical treatment of
blinking quantum dots, bypassing the limitations of the conventional Liouville treatment.
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I. INTRODUCTION

The phenomenon of aging has been known for a long time
to be a property of spin glasses and polymersf1g. Part of the
reason for the recent interest in the aging phenomenon has to
do with the predicted breakdown of certain fundamental as-
sumptions made in equilibrium statistical mechanics when
applied to strongly disordered systems. For example, the On-
sager principlef2g, which is the relaxation of a perturbed
system back to its equilibrium state described by an unper-
turbed autocorrelation function, is violated in anomalous dif-
fusion leading to an anomalous relaxation. More recent pa-
pers on this phenomenon are devoted to studying aging in
diffusion processes occuring ind-dimensional latticesf3g, in
low dimensional environmentsf4g and in the quantum dy-
namics of dissipative free particlesf5g. Most recentlyf6,7g
there has been some interest in the manifestation of aging in
processes described by means of the continuous time random
walk sCTRWd formalism f8g.

The recent work of Ref.f9g establishes that the intermit-
tent radiation-induced fluorescence of colloidal semiconduc-
tor quantum dots also yields aging. These new materials,
under the influence of a radiation field generate intermittent
fluorescence suggesting that the system jumps back and forth

from a “light on” to a “light off” state f10g, with a non-
Poisson distribution of times of sojourn in these two states.
This is a quantum mechanical process that, in principle,
should be described using a two-state master equation. How-
ever, the important work of Junget al. f10g shows that the
adoption of the ordinary Liouville approach to the density
time evolution encounters serious difficulties, caused by the
presence of aging. This difficulty is confirmed by the more
recent work of Aquinoet al. f11g, who have evaluated the
emission and absorption spectrum of this intermittent system
using the CTRW formalism. For this reason, it is important
to address the problem of the foundation of the master equa-
tion from the new perspective of trajectoriessCTRWd rather
than from that of densities, as in the fundamental work of
Zwanzig f12g. The conflict between these two pictures, no-
ticed for the first time by Bolognaet al. f13g, is far from
being fully understood, and it is not yet clear if the contro-
versy is due to the inadequacy of the known forms of non-
Markov master equations, derived from the Liouville-density
method, or to an even more fundamental reason, namely, the
breakdown of the generally accepted equivalence between
the density and trajectory pictures. To shed light into this
important issue, herein we plan to reexamine the issue of
aging, widely discussed in the field of glassy materials, and
the important mathematical treatment of this property made
by Godrèche and Luckf14g as well, from the perspective of
the generalized master equationsGMEd.

A natural way of formally expressing aging is through the
correlation function of the stochastic variable of interest,j,
which is expressed as an ensemble average indicated by the
brackets
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kjst1djst2dlta

kj2l
; Fj

stadst1 − t2d. s1d

As we shall see throughout this paper, the parameterta de-
notes the time distance between the preparation and the ob-
servation process. The averaging brackets carry a subscript
stressing that this is ata-old property, rather than the tradi-
tional aged property, only depending onut1− t2u. The time
difference indicates the stationarity of the underlying pro-
cess, but theta superscript denotes a dependence on the age
of the process as well. In the case of a dichotomous variable
obeying renewal theory, the exact expression for the Laplace
transform of this age-dependent correlation function was
found by Godrèche and Luckf14g. Their exact result was
recently recovered by Margolin and Barkaif15g as a special
case of a more general expression, since the latter authors do
not require the condition that the two states of the dichoto-
mous variablej have the same waiting-time distribution.
However, herein we make the same assumption as did Go-
drèche and Luckf14g, and derive their result along the lines
of the recent work of Ref.f7g. Allegrini et al. f7g noticed that
in the non-Poisson case the well known GME of Kenkre,
Montroll, and Shlesingerf16g becomes incompatible with
the Onsager principlef2g and found a way to make the GME
compatible with the aged condition. However, theyf7g left
unsolved the problem of deriving a GME of arbitrary age,
which would be equivalent to making the Onsager principle
compatible with an incompletely aged system. Herein we
solve this problem and establish that this solution leads to the
exact expression for the correlation function of arbitrary age
found by Godrèche and Luckf14g.

The GME derived herein does not have the same origin as
those widely discussed in the literaturef12g. The Zwanzig
GME, in fact, one of the most popular master equations, is
derived from a first principles procedure, starting from the
statistical Liouville equation of the whole universe. The
Zwanzig GME is a projection of this universal Liouville
equation onto the Hilbert space of the system of interest. The
approach used to derive the GME herein is based on the
experimental observation of non-Poisson dichotomous sig-
nals. Examples of such signals include those produced by
ionic channelsf17g and by blinking quantum dotsf10g. We
build up a GME that is compatible with the experimentally
determined non-Poisson nature of these processes, assuming
the applicability of renewal theory. We leave open the ques-
tion as to the source of randomness, but note in passing that
the fluctuations in the system variable are generated by the
environment. A simplified dynamical model has reproduced
the essential statistical properties of the system of interest, in
the case of infinitely aged GMEf18g. In the case of arbitrary
age, not only a first principle derivation is missing, a condi-
tion shared by the infinitely aged case: there is, to date, not
even a heuristic derivation of the corresponding GME.
Herein we provide a heuristic derivation of a GME with
arbitrary age, one based on an exact expression for the cor-
responding distribution of sojourn times, and we use this
result to derive an exact expression for the correlation func-
tion.

In concluding the Introduction, we point out that we re-
work the problem from a number of perspectives. We do this
because each approach provides separate and distinct in-
sights into the phenomenon described by a GME of arbitrary
age. The first perspective adopted in this paper focuses on
the derivation of a GME, based on the experimental obser-
vation of the time evolution of a trajectory, characterized by
rare jumps from one state to another. The second perspective
uses a Liouville-like approach to the time evolution of the
variable of interest and its environment. No attempt is made
to derive the former dynamic picturestrajectoryd from the
latter sprobability densityd. The probability density perspec-
tive is characterized by infinite memory, yet, the statistical
process under study is generated by random critical events,
whose occurrence erases the memory of earlier events.
Therefore, we think it is prudent to examine, yet again, the
same process from a third perspective, one based on the di-
rect observation of the sequence of rare random events.

We find that the use of three different perspectives is fruit-
ful in shedding light on the recent observation made by
Sokolov, Blumen, and Klafterf19g. Their results, in our
opinion, imply the breakdown of certain well-established no-
tions of equilibrium statistical mechanics, such as linear re-
sponse theory as a prescription for predicting the effect of
externally perturbing a system out of equilibrium.

The outline of the paper is as follows. In Sec. II we em-
ploy the reduced density perspective, namely, we build up
the GME of arbitrary age. In Sec. III we study the time
evolution of the total distribution density. In Sec. IV we use
a third method, based on the probability of occurrence of the
rare random events. We devote Sec. V to illustrate the physi-
cal connection between spin-glass and blinking quantum dot
aging. Finally, in Sec. VI we make some concluding re-
marks.

II. THE REDUCED DENSITY PERSPECTIVE

This section is devoted to the application of the reduced
density perspective to the construction of a GME. In the
statistical physics literature this perspective implies a con-
traction on the total density matrix onto a prescribed sub-
space. Consequently, constructing the equation of motion of
the total density matrix should be the first step. The reason
why we reverse the perspective, thereby confining the total
density treatment to the next section, is due to the fact that
non-Poisson statistics has the effect of making the ordinary
approach extremely difficult, if not impossible, as discussed
in the companion papersf18,20g. The derivation of the GME
is made possible by expressing the higher-order correlation
functions in terms of the second-order correlation function,
via simple expressions that are violated by the non-Poisson
statistics. This is the reason why we derive the GME from
the continuous time random walksCTRWd of Montroll and
Weissf8,21g, rather than from the equation of motion for the
total distribution density.

A. From the generalized master equation to the age-dependent
correlation function

The reduced density matrix perspective is based on the
adoption of the GME formally defined by
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d

dt
pstd = −E

0

t

Fst − t8dKp st8ddt8, s2d

wherepstd is them-dimensional population vector ofm sites,
so that itsith component,pistd, represents the probability of
finding the walker at timet in the ith site. states.K is a
transition matrix between the sites andFstd is the memory
kernel. We study the case where the fluctuating variablej
leading to this GME is dichotomous. This means that the
GME has only two states and the matrixK reads

K = S 1 − 1

− 1 1
D . s3d

The waiting-time distribution in either of the two states is
denoted bycstd. We establish the connection of the GME
with the CTRW f7,8g by relating the Laplace transform of

the memory kernelFstd, given byF̂sud, to the Laplace trans-

form of the waiting-time distributioncstd, given byĉsud, as
follows:

F̂sud =
uĉsud

1 − ĉsud
. s4d

We consider two distinct processes, that of preparation
and that of observation. The preparation process establishes
the initial conditions of the set of trajectories under study. A
trajectory is a sequence of symbols1 or 2, specifying
whether the system is in the stateu1l or u2l. We call the time
interval with the system either entirely in the stateu1l or
entirely in the stateu2l the laminar region. With Zumofen
and Klafter f22g, we assume that the preparation process,
beginning at timet=−ta, insures that all these trajectories
begin with the system at the onset of a laminar region, either
1 or 2.

The observation process begins at timet=0ù−ta. The
distribution of first sojourn times is denoted bycta

std and is,
in general, different fromcstd. In fact, the laminar region
corresponding to the first sojourn time might have begun
earlier thant=0. The exact expression for this time distribu-
tion is

cta
std = cst + tad + o

n=1

` E
0

ta

dy csy + tdcnsta − yd, s5d

wherecnstd denotes the probability thatn jumps occur dur-
ing the time interval of lengtht, the last of which occurs at
time t=t. As is well known, for a renewal process the wait-
ing times for successively more jumps is given by the con-
volution

cnstd =E
0

t

cn−1st8dc1st − t8ddt8, s6d

with cstd;c1std. The ta-old distribution of first sojourn time
was discussed earlier in some detailf23g. However, a careful
analysis of Eq.s5d can help the reader to realize the rationale
behind this distribution of sojourn times. The first term on
the right-hand side of Eq.s5d corresponds to the case when

the first laminar region is extended in time more than the
time interval ta between preparation and observation. The
second term takes into account the cases when the last lami-
nar region began after the preparation time, after a sequence
of an arbitrarily large number of earlier laminar regions, the
first of which, of course, begins att=−ta.

In the Poisson case, because of its unique functional form,
there is no dependence ofcta

on ta, and consequently no
aging. In the non-Poisson case, on the contrary, the two
waiting-time distributions,cta

andcstd, are identical only if
ta=0. In this case both CTRW and GME correspond to
switching-on the observation process at the same time as the
preparation process, and the connection between the two pic-
tures is given by Eq.s4d.

Allegrini et al. f7g proved that the GME is compatible
with an infinitely aged CTRW, provided that the memory
kernelFstd is made compatible with an infinitely aged con-
dition, characterized by a distribution of first sojourn times,
which is infinitely aged. In this caseta→` so that

F̂`sud =
uĉ`sud

1 + ĉsud − 2ĉ`sud
, s7d

where

c`std =
1

ktlEt

`

dt8cst8d. s8d

It is straigthforward to extend the calculations of Ref.f7g to
the case of an arbitrarilyta-old system, so that Eq.s7d is
replaced with

F̂ta
sud =

uĉta
sud

1 + ĉsud − 2ĉta
sud

, s9d

whereĉta
sud is the Laplace transform ofcta

std.
Using the GME with theta-old memory kernel, we define

the age-dependent correlation functionFj
stadstd through its

Laplace transform, as follows:

F̂j
stadsud =

1

u + 2F̂ta
sud

. s10d

This prescription corresponds to setting

Fj
stadstd =

p1std − p2std
p1s0d − p2s0d

, s11d

as one can easily check by Laplace transforming both sides
and using the GME with theta-old memory kernelssee Sec.
II B d. old memory kernel. In other words, the correlation
function of arbitrary age mirrors the extension of the On-
sager principle, which is usually limited to infinitely aged
systemsf7g, to physical conditions of arbitrary age. It has to
be pointed out that at this stage there is no guarantee that the
Onsager principle of arbitrary age holds true. However, in
Sec. II B we show that Eq.s10d yields the exact result of
Godrèche and Luckf14g for the corresponding correlation
function. Furthermore, in Sec. II C we establish the same
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result using arguments based on trajectories rather than den-
sities, thereby affording an independent construction of the
exact expression for theta-old correlation function. All this
can be thought of as a compelling demonstration of the cor-
rectness of Eq.s11d, extending the Onsager principle to con-
ditions of arbitrary age.

B. Derivation of the exact expression proposed by Godrèche
and Luck: The probability perspective

To establish that the proposed approach yields the exact
expression of Godrèche and Luckf14g, let us express the
ta-old correlation function through the probability vectorp
;sp1,p2d for the dichotomous variablej= ±1 to have either
positive sstate 1d or negativesstate 2d values. We have that

Fj
stadstd =

kjs0djstdlta

kj2l
= p1s0dp1stu1,t = 0d + p2s0dp2stu2,t = 0d

− p1s0dp2stu1,t = 0d − p2s0dp1stu2,t = 0d, s12d

wherepjst uk,t=0d is the conditional probability that the vari-
ablej is in the statej at timet, given that at timet=0 it was
in the statek. This means thatpjst uk,t=0d is obtained letting
those trajectories evolve that at timet=0 hadj in the statek.
For a straightforward evaluation ofpjst uk,t=0d, we use the
GME formalism, adapted to theta-old system, and we take
into account the initial conditionpis0uk,t=0d=di,k. Accord-
ing to the GME the components of the conditional probabil-
ity vector are determined by

d

dt
pjstuk,t = 0d = −E

0

t

dt8Fta
st − t8do

i=1

2

Kjipist8uk,t = 0d,

s13d

with F̂ta
sud given by Eq.s9d and the elements ofK given by

Eq. s3d.
By Laplace transformings13d and doing some algebra, we

obtain

p̂jsuuk,0d = o
i=1

2

fuI + F̂ta
sudK g ji

−1pis0uk,0d. s14d

Defining the matrix

J = fuI + F̂ta
sudK g−1 =1

u + F̂ta
sud

ufu + 2F̂ta
sudg

F̂ta
sud

ufu + 2F̂ta
sudg

F̂ta
sud

ufu + 2F̂ta
sudg

u + F̂ta
sud

ufu + 2F̂ta
sudg
2 ,

and using the initial conditionpis0uk,t=0d=di,k, we obtain
for the Laplace transform of the conditional probability vec-
tor the following expression:

p̂jsuuk,0d =
fu + F̂ta

sudgd j ,k + F̂ta
sudsd j ,k+1 + d j ,k−1d

ufu + 2F̂ta
sudg

.

s15d

Using Eq.s15d we can Laplace transforms12d to obtain

F̂j
stadsud = p1s0d

u + F̂ta
sud

u„u + 2F̂ta
sud…

+ p2s0d
u + F̂ta

sud

u„u + 2F̂ta
sud…

− p1s0d
F̂ta

sud

u„u + 2F̂ta
sud…

− p2s0d
F̂ta

sud

u„u + 2F̂ta
sud…

.

s16d

We note that the probability is normalized,p1s0d+p2s0d=1.
Thus, it follows that

F̂j
stadsud =F u + F̂ta

sud

u„u + 2F̂ta
sud…

−
F̂ta

sud

u„u + 2F̂ta
sud…
G

3fp1s0d + p2s0dg

=
1

u + 2F̂ta
sud

, s17d

confirming the correctness of the definition introduced in Eq.
s10d. Substitutings9d into s17d we obtain

F̂j
stadsud =

1

uF1 + 2
ĉta

sud

1 + ĉsud − 2ĉta
sud
G =

1

u
F1 −

2ĉta
sud

1 + ĉsud
G ,

s18d

which coincides with the results of Godrèche and Luckf14g.
Furthermore, the ratio of the differences in probability is
determined in Laplace space by

p̂1sud − p̂2sud
p1s0d − p2s0d

= o
i=1

2
sJ1i − J2idpis0d
p1s0d − p2s0d

=
1

u + 2F̂ta
sud

= F̂j
stadsud.

s19d

As pointed out earlier, Eq.s19d means that one can extend
the Onsager principle from the infinitely aged systems, for
which Onsager originally defined it, to systems of any age.
In the latter case the relaxation is proportional to theta-old
correlation function, not to the infinitely old, or equilibrium,
correlation function. In summary, we discovered an Onsager
principle of arbitrary age, at least in the special case of the
dichotomous variables considered in this paper.

C. Derivation of the exact expression proposed by Godrèche
and Luck: The trajectory perspective

It is possible to again derive the exact result of Eq.s18d
from a different perspective, which will allow us, in Sec. IV,
to propose an analytic expression for theta-old correlation
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function as a function of time. This expression, as we shall
see, is not exact, but it is shown numerically to be a very
good approximation to the exact result.

The usual method of connecting the correlation function
Fj to the waiting-time distribution, within a trajectory per-
spective, is to introduce a theoretical waiting-time distribu-
tion, c*std, which cannot be observed directly. In fact, the
experimental waiting-time distribution, namely, the distribu-
tion of times with alternate signs, denoted by us ascstd, is
obtained from the theoretical waiting-time distribution,c*std,
by adopting the following procedure. We divide the time axis
into bins, whose size is determined by the waiting-time dis-
tribution c*std. Then, these bins are assigned either the value
1 or the value −1, by tossing a coin to make the decision. It
is evident that the intervals along the time axis with the same
sign, are larger than the time bins determined byc*std, since
two or more consecutive coin tossings might have produced
the same sign. It is shownf22g that the Laplace transform of
c is connected to the Laplace transform ofc* via the relation

ĉsud =
ĉ*sud

2 − ĉ*sud
. s20d

Let us use the termeventto denote the coin tossing intro-
duced above. The expressions20d is the result of summing
over all possibilities of not changing sign with a coin toss,
which turns out to be a geometrical series in the Laplace
representation. The correlation functionFj and the theoreti-
cal waiting-time distribution functionc* are connected
through the relation

Fjstd =

E
t

`

st − tdc*stddt

ktl
, s21d

where the average waiting time is given by

ktl ; E
0

`

tc*stddt. s22d

Equations21d determines that the correlation functionFjstd
is equal to the probability of finding a window of lengtht
without internal events.

The same result can be immediately recovered using

Fjstd = C`
* std ; E

t

`

dt8c`
* st8d =

1

ktlEt

`

dt8E
t8

`

dt9c*st9d.

s23d

We note that, see Ref.f7g,

c`
* std ;

1

ktlEt

`

dt8c*st8d s24d

is the infinitely aged waiting-time distribution. Actually, Eq.
s23d is the infinitely aged correlation function, a special case
of the more general prescription

Fj
stadstd = Cta

* std ; E
t

`

dt8cta
* st8d = 1 −E

0

t

dt8cta
* st8d.

s25d

It is straightforward to show that theta-old experimental
waiting-time distribution and theta-old theoretical waiting-
time distribution are connected through the following sum of
convolutions:

cta
std =

1

2
cta

* std!Hdstd +
1

2
c*std +

1

2
c*std!

1

2
c*std + ¯ J ,

s26d

where the symbol! denotes time convolution. In fact, after a
first interval of time followed by a coin toss with no change
of sign, determined bycta

* /2, the next intervals of time with
no change of sign according to the coin tossing prescription,
are determined byc* /2. The sum of the convolutions takes
into account all the possible sequences of intervals of time
with no change of sign before a change of sign of the vari-
ablej eventually occurs, and gives as final result the distri-
bution for a first observed sojourn timet of the variablej in
one of its two states, that iscta

std.
Thus by summing the geometric series in the Laplace

variables, froms26d we obtain

ĉta
sud =

ĉta
* sud

2 − ĉ*sud
. s27d

Using Eq.s20d we write Eq.s27d as

ĉta
* sud =

2ĉta
sud

1 + ĉsud
. s28d

By Laplace transforming Eq.s25d and using Eq.s28d, we
obtain

F̂j
stadsud =

1 − ĉta
* sud

u
=

1

u
F1 −

2ĉta
sud

1 + ĉsud
G , s29d

namely, we again recover the exact result of Godrèche and
Luck given by Eq.s18d. This establishes the equivalence of
the trajectory and GME prescriptions for this process.

D. Generalized master equation of arbitrary age

We are now in a position to make a preliminary balance of
the results obtained so far. The first is that we have general-
ized the result of an earlier paperf7g, in that we have derived
the GME of arbitrary age

d

dt
pstd = −E

0

t

Fta
st − t8dKp st8ddt8, s30d

whose memory kernelFta
std is defined though its Laplace

transform by means of Eq.s9d. We have also shown that the
Onsager principle, valid for infinitely aged systems, can be
extended to conditions of any age, and that this extension
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allows us to derive an exact expression for theta-old corre-
lation function. However, the analytic results obtained so far
are in the Laplace domain. It is desirable to achieve them in
the time domain, as well. We now turn our attention to the
latter.

III. THE LIOUVILLE-LIKE APPROACH

In this section we derive another expression for theta-old
correlation function adopting a perspective where aging is
determined by the out of equilibrium bath for the variable of
interest,j. There might exist conditions, as we shall see,
where equilibrium is not even allowed. The expression for
the ta-old correlation function afforded by this perspective is
exact, and is thus equivalent to the Godrèche and Luck ex-
pression of Eq.s18d. However, the exact expression is im-
plicit, rather than explicit, and is therefore more convenient
for the numerical calculations done subsequently.

Here we adopt the perspective of earlier workf13,20g to
account for the aging effects characterizing the fluctuations
of the dichotomous variablej. These fluctuations occur
while the environment of the variable,j, slowly drifts. This
drifting process is extended over time, and could lead to
circumstances where it is not possible to attain equilibrium
asymptotically. In keeping with the jargon of statistical me-
chanics the environmental or “irrelevant” variable is calledy
and in the model moves in the intervalI =f0,2g. In the semi-
interval f0,1g, we use the equation of motion for the prob-
ability density

]psy,td
]t

= − l
]

]y
yzpsy,td. s31d

This is the motion determined by a potential, with the mini-
mum aty=1, in the over-damped case. In the intervalf1,2g,
the overdamped potential is the mirror image of the potential
acting on the left interval. Consequently, if the initial condi-
tion is located in the internal part of the intervalf0,1g, the
particle moves, from the left to the right, with a deterministic
motion, towardsy=1. If the particle is initially located in the
interior of the intervalf1,2g, it moves deterministically from
the right to the left. When the particle reaches the potential
minimum, it is injected back, with equal probability, into any
of the points of the intervalI excludingy=0, y=1 andy=2.
The time spent byy within I corresponds to sojourning in
one of the two states of the variablej, eitheru1l or u2l. The
instant of back injection corresponds to the choice of the new
state and, with equal probability, this is either the same state
or the other state. The variabley represents the environment
of the variablej, and its initial distribution is given by the
state of the bath. The corresponding waiting-time distribution
between two consecutive back injections is

c*std = sm − 1d
Tm−1

st + Tdm , s32d

where the indexm is related toz of Eq. s31d by

m ;
z

z− 1
, s33d

and the parameterT, characterizing the waiting-time distri-
bution of Eq.s32d is

T ;
m − 1

l
, s34d

in accordance with the normalization constraint. The authors
of Refs.f7,18g have shown that the essential properties of the
dichotomous non-Poisson fluctuation can be accounted for
by limiting ourselves to this simplified picture, involving
only the semi-intervalf0,1g. In this simple picture the aging
process is described by

]psy,td
]t

= − l
]

]y
yzpsy,td + lps1,td, s35d

which takes into account the back injection into the semi-
interval, occurring with uniform probability, when the par-
ticle reaches the pointy=1. For simplicity, but with no loss
of generality, we fixl=1.

Using the results of Ref.f20g the ta-old correlation func-
tion is evaluated as follows. The bath is prepared at timet
=−ta. This means that at timet=−ta the distribution ofy
within the intervalI is flat. In the casez,2 this distribution
tends to the equilibrium distribution,peq~1/yz−1. If z.2 this
distribution diverges, thereby implying that the distribution
approaches the Dirac delta function located aty=0. This is
the nonstationary condition, the condition where equilibrium
is not allowed, and only a condition of eternal drift is admit-
ted. Suppose this distribution evolve for a timeta, without
our observing it. This means that we begin the observation
process when the system has a new distribution, different
from the initial flat distribution, and determined by its time
evolution from t=−ta to t=0, described by Eq.s35d. For t
ù0 Eq. s35d is replaced with Eq.s31d

]psy,td
]t

= −
]

]y
yzpsy,td, s36d

namely the back injection process is stopped, thereby imply-
ing that the population decreases.

The theory of Ref.f20g relates the probability solution to
the Liouville-like equation to theta-old correlation function
as follows:

Fj
stadstd =E

0

1

dy psy,td. s37d

Note that the initial conditionpsy,0d is obtained from Eq.
s35d moving from the flat distribution att=−ta. The time
evolution, corresponding to the observation process, is deter-
mined by Eq.s36d. This simple picture is a fair representa-
tion of the description made in terms of trajectories in Sec.
II. The fact that the norm ofpsy,td, whenpsy,td is described
by Eq. s36d, is not conserved, reflects the occurrence of
jumps from one state to the other, making the population of a
given state decrease. Let us remark that the correlation func-
tion is determined by the antisymmetric part of the whole
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distribution f20g. This formal condition corresponds to ob-
serving the time evolution ofpsy,td, with y ranging fromy
=0 to y=1, under the action of Eq.s31d, with no back injec-
tion process. The process of back injection is essential to
determine the correlation function of arbitrary age. However,
once the parameterta is fixed, and with it the age of the
correlation function, the evaluation of the correlation func-
tion is done by imagining the bath frozen in the distribution
corresponding to this fixed age. This is the reason we use Eq.
s31d to determine the correlation function rather than Eq.
s35d.

The process of back injection is essential for the slow
environmental drift, but the correlation time of ageta is de-
termined by the age-fixed condition, the bath beingta old,
and keeping this age forever.

Our goal is to calculate the correlation function of arbi-
trary age. According to Eq.s37d, this goal requires that we
evaluatepsy,td, first. To carry out this calculation we follow
the procedure illustrated in detail in Ref.f24g. The time evo-
lution from t=−ta to t,0 is described by Eq.s35d, yielding
for the solution

psy,td =
1

f1 + sz− 1dst + tadyz−1gz/sz−1d

+E
−ta

t ps1,tddt

f1 + sz− 1dst − tdyz−1gz/sz−1d , s38d

with ps1,td determined, in turn, by Eq.s35d.
As already stated, fort.0, psy,td is governed by Eq.

s36d, so that its solution is, given the initial value,

psy,td =U psh,0d
f1 + sz− 1dyz−1tgz/sz−1dU

h =y/f1 + sz − 1dyz−1tg1/sz−1d
.

s39d

Now, we can calculate the final expression for the age-
dependent correlation function given by Eq.s37d. After some
simple algebra we obtain the following expression:

Fj
stadstd =

1

f1 + sz− 1dst + tadg1/sz−1d

+E
−ta

0 ps1,tddt

f1 + sz− 1dst − tdg1/sz−1d

= C*st + tad +E
−ta

0 ps1,tddt

f1 + sz− 1dst − tdg1/sz−1d

= C*st + tad + f1 − C*stadg

+E
−ta

0 ps1,tddt

f1 + sz− 1dst − tdg1/sz−1d

−E
−ta

0 ps1,tddt

f1 − sz− 1dtg1/sz−1d . s40d

Note that in Eq.s40d we are using the definition

C*std =E
t

`

c*stddt. s41d

This notation for the survival probability is also used in Sec.
IV A. We notice that,t.0 andps1,td is calculated from Eq.
s35d with y=1 and −ta, t,0. This is an exact expression
that turns out to be convenient to numerically check the pre-
scriptions of Sec. IV.

It is worth using the perspective of this section to shed
further light into the problem under discussion in this paper.
Let us notice the following.

If the age vanishesta→0, then theta-old correlation func-
tion reduces to the probability of no event occuringFj

stadstd
→C*std.

If the age increases without limitta→`, then theta-old

correlation function reduces to a known resultFj
stadstd

→Fjstd, where

Fjstd =
1

f1 + sz− 1dtgs2−zd/sz−1d s42d

is the usual correlation function calculated at equilibrium.
So, we must observe a crossover between two distinct re-
gimes. Moreover, we anticipate that we recover these results
from a different perspective in Sec. IV.

The perspective adopted in this section makes it easier to
understand, on physical grounds, why the non-Poisson con-
dition produces aging. The Poisson condition corresponds to
z=1 in the nonlinear dynamical process of Eq.s35d, and in
this case the distribution is always flat. Aging is the process
of slow regression of the bath variable to equilibrium, a pro-
cess that can, in principle, last forever. With this representa-
tion it is possible to study the correlation function of arbi-
trary age also in the casez.2. Allegrini et al. f20g give a
detailed discussion of the effect of external perturbations.

In the casez,2 equilibrium is possible. An external per-
turbation can be used to create a condition whereby the sys-
tem is out of equilbrium. The observation of the population
difference between the two states,j=1 andj=−1, is equiva-
lent to determining the correlation function. Note that the
initial condition that we use to study the time evolution of
psy,td during the observation process, Eq.s36d, is the anti-
symmetric distribution of the intervalf0,2g folded into f0,1g
ssee Ref.f20gd. It is evident that in practice the equilibrium
correlation function is never observed. In fact, the external
perturbation should create a nonsymmetric initial condition
in the whole intervalf0,2g. The antisymmetric portion of this
distribution, folded into the intervalf0,1g, should create the
same out of equilibrium distribution as that produced by
folding in the same way the anti-symmetric portion of the
equilibrium distribution. As pointed out in Ref.f20g, this is
impossible to do in practice with a a perturbation lasting for
a finite time, and, thus, with any realistic experimental pro-
cedure.

IV. AN ANALYTICAL EXPRESSION OF THE
CORRELATION FUNCTION OF ARBITRARY AGE

The exact expressions, Eq.s18d and Eq.s29d, allow us to
determine the dependence of the age-dependent correlation
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function on time via inverse Laplace transforms. This inver-
sion is done numerically since we are unable to carry out
direct analytic inversion of the Laplace expression. There is
therefore the need to find an analytical expression for
Fj

stadstd, even if the price we pay is an approximation and the
loss of exactness. This section is devoted to the derivation of
an accurate, albeit approximate, analytical expression for the
correlation function of arbitrary age.

A. An exact implicit expression for the correlation function
of arbitrary age

We write Fj
stadstd, namely the probability of not finding

events inside the intervals0,td, given the occurrence of an
event at time −ta, in the following implicit form:

Fj
stadstd = C*st + tad +E

0

ta

dtlc
*sta − tldFj

stldstd. s43d

This is the probability of finding an event at a time larger
than t from the preceding one. The right-hand side of Eq.
s43d is the sum of two terms, the first corresponds to no event
occurring in the whole intervals−ta,td and the second term
takes into account the possibility of at least one event occur-
ring between −ta and 0. The instant −tl signals the first of
these eventssor the event, if there is only oned. The coin-
tossing procedure has the double effect ofrejuvenatingthe
processsthe correlation function now has agetld and of fac-
toring the two probability functions inside the integral.

It is interesting to notice that Eq.s43d is exact, which can
be verified by differentiating both sides of the equation, and
making use ofs25d and s41d. This procedure yields

cta
* std = c*st + tad +E

0

ta

dt1c*sta − t1dct1
* std, s44d

namely an implicit sbut analyticd expression forcta
* . A

straightforward iteration ofs44d leads to

cta
* std = c*st + tad +E

0

ta

dt1c*sta − t1dc*st + t1d

+E
0

ta

dt1c*sta − t1dE
0

t1

dt2c*st1 − t2dc*st + t2d

+E
0

ta

dt1c*sta − t1dE
0

t1

dt2c*st1 − t2d

3E
0

t2

dt3c*st2 − t3dc*st + t3d + ¯ , s45d

i.e., a sum over all possibilities of finding events at both
times t and −ta with no events between 0 andt. This is
exactly the definition ofcta

* std. In detail, the first term in the
right-hand side ofs45d, corresponds to the case in which no
event occurs in the intervalI ;s−ta,0g, while all further
terms refer, respectively, to one event att1 in I, to two events,
at t1 and t2, in I, and so on, witht1, t2, t3,¯. Note that
cta

* std is obtained fromc*std in the same waycta
std is ob-

tained fromcstd: in fact, if in Eq. s5d we make the substitu-
tion cstd→c*std, we obtain exactly Eq.s45d, i.e., the defini-
tion of cta

* std.

B. Equivalence with the exact expression of Godrèche
and Luck

As we said, Eq.s43d is exact. Consequently, this equation
is expected to be equivalent to the exact expression proposed
by Godrèche and Luck in Ref.f7g. In this subsection, as a
double check, we prove that Eq.s43d is in fact equivalent to
the expression of Godrèche and Luck. and To do that, let us
differentiate both sides of this equation with respect tot to
obtain

d

dt
Fj

stadstd = − c*st + tad +E
0

ta

dtlc
*sta − tld

d

dt
Fj

stldstd.

s46d

A more tractable expression is obtained by taking the
Laplace transform of this new expression with respect tota to
obtain

d

dt
F̂j

ssdstd = − estFĉ*ssd −E
0

t

dy e−syc*sydG + ĉ*ssd
d

dt
F̂j

ssdstd,

s47d

from which it follows that

d

dt
F̂j

ssdstd = −

estfĉ*ssd −E
0

t

dy e−syc*sydg

1 − ĉ*ssd
. s48d

The right-hand side of this equation appears formidable, but
one can easily see by Laplace transforming Eq.s44d with
respect tota, that it is nothing more than the Laplace trans-

form with respect tota of −cta
* std, namely −ĉs

*std. Conse-
quently, by inverse Laplace transforming Eq.s48d we obtain

d

dt
Fj

stadstd = − cta
* std, s49d

which, by integration, yields

Fj
stadstd = Fj

stads0d −E
0

t

dt1cta
* st1d. s50d

The initial value of theta-old correlation function can be
determined by explicitly Laplace transforming Eq.s43d, cal-
culated att=0, with respect tota, thereby yielding

F̂j
ssds0d = Ĉ*ssd + ĉ*ssdF̂j

ssds0d, s51d

which simplifies to

f1 − ĉ*ssdgF̂j
ssds0d = Ĉ*ssd.

On the other hand, we know thatĈ*ssd=f1−ĉ*ssdg /s, so the
initial Laplace variable is
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F̂j
ssds0d = 1/s.

It is obvious that the inverse Laplace transform of this last
expression yields the initial condition for the correlation

function F̂j
stads0d=1, as it must be, based on the definition of

Eq. s1d when t1= t2 andj= ±1, a dichotomous variable. Us-
ing this initial condition ins50d, it follows that

Fj
stadstd = 1 −E

0

t

dt1cta
* st1d = Cta

* std, s52d

which, as we know from Sec. II, coincides with the exact
expression for theta-old correlation function of Ref.f14g.

C. Approximation through iterative expansion,
and truncation

Although we established that Eq.s43d is exact, due to its
implicit nature, it cannot be used to obtain an analytic func-
tion without carrying out a reasonable approximation. The
approximation we select rests on replacingFj

stldstd in the

right-hand side of Eq.s43d with the functionAstadstd, which
denotes a correlation function of uncertain age, which is,
however, younger than theta-old correlation function defined
by Eq. s43d. This correlation function reads

Astadstd =
Fjstd − Fjst + tad

1 − Fjstad
. s53d

The easiest way to derives53d is to adopt the language of
conditional probabilities. The numerator of this expression is
the probability of not finding an event between 0 andt, mi-
nus the probability of not finding an event between −ta andt.
If we call A the condition of no event in the interval
s0,td, andB the condition of at least one event in the interval
s−ta,0g, then the numerator of the right-hand side ofs53d can
be identified with the joint probabilityPsA,Bd. On the other
hand, the denominator ofs53d is simplyPsBd, the probability
of the eventB occuring, and therefore the functionAstadstd
can be identified, as it should, with the conditional probabi-
lily PsAuBd, namely with the probability of finding no event
between 0 andt si.e., it is a correlation functiond, given an
event between −ta and 0si.e., it has an age younger thantad.

Finally, by plugging Eq.s53d into Eq. s43d we obtain

Fj
stadstd = C*st + tad + f1 − C*stadg

Fjstd − Fjst + tad
1 − Fjstad

.

s54d

This expression is not exact, but it is analytic. Moreover, the
form of Eq. s43d suggests an iterative approach, and we can
therefore refine our result, by replacingFj

stldstd with Astadstd,
after an arbitrary number of iterations. In Fig. 1 we check the
accuracy of the first-order approximation to the exact expres-
sion given bys54d, by comparing it to the exact prediction of
Eq. s40d. The curves in Fig. 1 represent a numerical treat-
ment of s40d with different values ofta. In this examplem
=2.5 andT=1.5 sas said,l=1d. The highest curve in the
figure represents the stationary correlation function, namely

ta=`. The correlation functionFj
stadstd has a faster decay,

with decreasing values ofta. Finally, the lowest curve repre-
sents the correlation function with zero age, namelyCta

* std.
The symbols in Fig. 1 overlaying the continuous curves rep-
resent the calculations using Eq.s54d with various ages. We
see perfect agreement fortaø ktl and for ta@ ktl. The agree-
ment remains good for intermediate values, with discrepan-
cies comparable to the numerical round-off errors.

V. PHYSICAL CONSEQUENCES OF THE RESULTS
OBTAINED

The results of the earlier sections establish that the GME
of arbitrary age, proposed in this paper, Eq.s30d, fits the
requirement of complete equivalence with the current litera-
ture on non-Poisson renewal processes. It is important to
stress that a significant model, generating non-Poisson statis-
tics from a renewal process, has been proposed by Bouchaud
and othersf25,26g. This model has raised wide interest and
has recently been applied to a variety of pheonomena
f27–31g.

The Bouchaud trap model refers to the spin-glass dynam-
ics, which is modeled with a set of branches, with different
energiesE, having a distribution

psEd = bg exps− bgEd, s55d

whereTg;1/bg is the glass transition temperature. For each
branch this model assumes the Arrhenius prescription

t = t0 expsbEd, s56d

where T;1/b denotes the sample temperature, andt the
time necessary to overcome the barrier of intensityE, by
means of thermal fluctuations.

Thus, using the relationship between the energy distribu-
tion and the waiting-time distribution,

FIG. 1. Theta-old correlation function,Fj
tastd, for different val-

ues of ta. Curves represent a numerical integration ofs40d with z
=5/3 andT=1.5, while dots correspond to the approximate formula
s54d.
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cstddt = psEddE, s57d

after some simple algebra, these authorsf25,26g obtain an
inverse power-law waiting time distribution

cstd = n
t0
n

t1+n , s58d

where the power-law index is given by

n ;
bg

b
. s59d

For b.bg the resulting waiting-time distribution asymptoti-
cally corresponds to that of Eq.s32d, with m,2. In this case,
the stationary GME, namely, the infinitely aged master equa-
tion, does not exist, and we have to consider conditions for
the system always being out of equilibrium. The approach
discussed herein does not have any limitation, even if it is
inspired to original work done moving from the stationary
condition fsee Eq.s7dg.

It is important to stress that there exists increasing interest
in understanding the blinking quantum dot phenomena. In
addition to the paper by Junget al. f10g, we mention here
more recent referencesf9,11,32–37g. The work of Brokman
et al. f9g proves that these processes undergo the same form
of aging as the Bouchaud trap model, thereby involving, also
in this case, the non-Poisson renewal perspective. It is im-
portant to stress that in this field the recent work of Veberket
al. f37g, addressing explicitly the issue of the intermittent
fluorescence of blinking quantum dots, rests on a model that
turns out to be equivalent to the Bouchaud trap model. In
fact, according tof37g, the electron responsible for the fluo-
rescent emission is trapped at a distancer with probability

psrd = a exps− aprd. s60d

The recovery probability is

ksrd = s1/t0dexps− akrd, s61d

implying that the electron is trapped for a timet given by

t = t0 expsakrd. s62d

It is evident that this model is equivalent to the Bouchaud
trap model. To realize this fact it is enough to replace the
energiesE of the Bouchaud model with the distancesr of the
model of Ref.f37g. The conclusion is that also in this case an
inverse power law is generated,

cstd = n
t0
n

t1+n , s63d

where

n =
ap

ak
. s64d

If ap,ak, we obtain a waiting time distribution with a di-
verging first moment, corresponding to the blinking quantum
dot conditionf37g.

To move from the physics of spin glasses to the physics of
quantum dots, as we plan to do in future publications with
the help of the results of this paper, it becomes important to

address fundamental issues such as the emission and absorp-
tion process. This leads us naturally to using the GME we
derived in an previous section. If an out of equilibrium con-
dition is created at a given timeta, then after the preparation
of the material, we predict the relaxation process of the quan-
tity

Pstd = p1std − p2std s65d

to be driven by

d

dt
Pstd = −E

0

t

dt8Fta
st − t8dPst8ddt8. s66d

It is important to stress that this result rests on a GME that
has an origin different from the prime principle procedure
adopted, for instance, by Zwanzigf12g, being essentially
based on experimental observation. Is this compatible or not
with a Liouville or Liouville-like treatment? This is an im-
portant issue that is discussed in the next section.

VI. CONCLUDING REMARKS

The central result of this paper is the generalization of the
GME discussed in Ref.f7g to one of arbitrary age. Another
result, closely related to the GME of arbitrary age, is the
generalization of the Onsager principle to physical condi-
tions of any age. The validity of this generalization of the
Onsager principle is confirmed by the fact that Eq.s19d, the
generalized Onsager principle, yields Eq.s18d, and this is
shown to be equivalent to the exact prescription of Godrèche
and Luck, which is independently rederived in Sec. II C.
Another interesting result is given by Eq.s54d. This is an
analytical expression forta-old correlation function, whose
accuracy has been established using Eq.s40d which is an-
other exact expression for theta-old correlation function, de-
termined by the Liouville-like approach of Sec. III. In the
special case of non-Poisson processes where the function
c*std has the form given by Eq.s32d, the approximate ex-
pression Eq.s54d turns out to be very accurate. Of course
there might be non-Poisson processes where Eq.s54d is not
as accurate as in the case presented here. However, the itera-
tive procedure discussed in Sec. IV C, allows us to determine
higher-order corrections, should they be necessary for a more
satisfactory treatment.

It is important to understand why Eq.s54d is not exact, in
spite of the fact that the approximation made for its deriva-
tion seems to fit the renewal nature of the process under
study, where any jump resets memory to zero. This is a con-
sequence of the infinite memory generated by non-Poisson
dynamics, in spite of the fact the random events reset the
memory to zero. The evaluation of the correlation function
involves probabilistic arguments, and with them the infinite
memory associated with the probabilistic treatment of non-
Poisson processes.

We illuminate the meaning of the correlation function of
arbitrary age by means of the Liouville-like density ap-
proach. The observation of the process of regression to equi-
librium of the population difference corresponds to evaluat-
ing the antisymmetric distribution, while leaving the
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symmetric part of the distribution free to evolve. If the dis-
tribution is at equilibrium, the symmetric part corresponds to
the equilibrium distribution and the integral of the left por-
tion of the antisymmetric part, without back injection, re-
gresses to zero as the corresponding equilibrium correlation
function. For any other condition, the integral of the left
portion of the antisymmetric part regresses to zero with an
analytical expression depending on the time at which obser-
vation begins. The regression continues as a function of that
specific initial condition while the symmetric part keeps
moving towards equilibrium independently of the population
difference. This explains why the regression to equilibrium
depends on the initial condition, of any age, with no further
dependence on the bath dynamics that keeps drifting towards
equilibrium. This also explains why an emission or absorp-
tion spectrumf11g is not stationary and changes with time.
The resonant radiation establishes a connection between the
antisymmetric and the symmetric parts of the distribution,
thereby updating observation to the changing bath condi-
tions.

It is worth ending this paper with some further remarks
about these theoretical problems. We have built up a GME of
arbitrary age, using an empirical approach. Is it possible to
derive the same GME by using a Liouville-like approach? In
principle, we should use the Liouville-like picture of Sec. III,
to derive, via contraction on the bath variables, the same
GME, of arbitrary age, as that of Sec. II D. However, it is
evident that this effort, even if we were successful, would be
of limited help, for practical purposes. Suppose, for instance,
that we have to study the response of the system to an exter-
nal, time dependent, perturbation. Would the GME of arbi-
trary, but fixed, age, be useful for this purpose? It is evident
that it would not. In fact, the external perturbation at times
different from the age of the system would produce effects
departing from the more realistic approach resting on per-
turbing trajectories. In the specific case of the absorption
spectrum of blinking quantum dotsf11g the authors, in fact,
adopted this trajectory perspective to make a theoretical pre-
diction that is incompatible with the perturbation of a GME
of fixed age.

There already exists in the literature at least the discussion
of one casef19g that seems to be a natural consequence of
this property. Sokolov, Blumen, and Klafterf19g derived an
exact density equation to describe a subdiffusion process.
This equation corresponds to brand new initial conditions.
This means a condition whereta=0. Then, these authors per-
turbed this equation with a time-dependent field, and found
that the theoretical result conflicts with the behavior of the
CTRW under the influence of the same perturbation. This
apparent contradiction arises because the time dependent
perturbation corresponds to additional observations, taking
place at different time values, none of them coinciding with
the observation time, but the perturbation att=0. This is true,
whatever the observation time is, eitherta=0, as in Ref.f19g,
or `. ta.0, a condition requiring the GME of this paper.
Regardless of the observation time that we assign to the
GME, it is impossible to make the GME prediction identical
to the CTRW prediction, if we require the perturbation to
remain external to the system. The concept of perturbation
itself turns out to be inadequate to study non-Poisson pro-
cesses, regardless of its intensity. Thus the results of the
present paper, in addition to shedding light onto the implica-
tions of Ref.f19g, imply a violation of linear response theory.
The only possible way to make the density compatible with
the trajectory picture is to make the external perturbation
become a part of the system under study. This means that we
have to build up a totally new, field-dependent, GME, along
the lines of Ref.f11g. This sets a limit on the applicability of
the GME of arbitrary age found in this paper. However, this
result seems to support the conclusion that the trajectory-
density conflict, revealed by Bologna, Grigolini and West
f13g might be a consequence of the aging properties emerg-
ing from non-Poisson renewal process.
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